Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Med (Lausanne) ; 9: 774550, 2022.
Article in English | MEDLINE | ID: covidwho-1779944

ABSTRACT

Background: Rapid diagnostic testing for SARS-Cov-2 antigens is used to combat the ongoing pandemic. In this study we aimed to compare two RDTs, the SD Biosensor Q SARS-CoV-2 Rapid Antigen Test (Roche) and the Panbio COVID-19 Ag Rapid Test (Abbott), against rRT-PCR. Methods: We included 2,215 all-comers at a diagnostic center between February 1 and March 31, 2021. rRT-PCR-positive samples were examined for SARS-CoV-2 variants. Findings: Three hundred and thirty eight participants (15%) were rRT-PCR-positive for SARS-CoV-2. The sensitivities of Roche-RDT and Abbott-RDT were 60.4 and 56.8% (P < 0.0001) and specificities 99.7% and 99.8% (P = 0.076). Sensitivity inversely correlated with rRT-PCR-Ct values. The RDTs had higher sensitivities in individuals referred by treating physicians (79.5%, 78.7%) than in those referred by health departments (49.5%, 44.3%) or tested for other reasons (50%, 45.8%), in persons without any comorbidities (74.4%, 71%) compared to those with comorbidities (38.2%, 34.4%), in individuals with COVID-19 symptoms (75.2%, 74.3%) compared to those without (31.9%, 23.3%), and in the absence of SARS-CoV-2 variants (87.7%, 84%) compared to Alpha variant carriers (77.1%, 72.3%). If 10,000 symptomatic individuals are tested of which 500 are truly positive, the RDTs would generate 38 false-positive and 124 false-negative results. If 10,000 asymptomatic individuals are tested, including 50 true positives, 18 false-positives and 34 false-negatives would be generated. Interpretation: The sensitivities of the two RDTs for asymptomatic SARS-CoV-2 carriers are unsatisfactory. Their widespread use may not be effective in the ongoing SARS-CoV-2 pandemic. The virus genotype influences the sensitivity of the two RDTs. RDTs should be evaluated for different SARS-CoV-2 variants.

2.
Ther Drug Monit ; 44(1): 148-165, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1722635

ABSTRACT

BACKGROUND: The COVID-19 pandemic has posed a great challenge to the medical community because little is known about its clinical course, therapeutic options, and laboratory monitoring tools for diagnosis, prognosis, and surveillance. This review focuses on immune biomarkers that can be measured in peripheral blood in a clinical laboratory under routine conditions to monitor the innate immune system response in the acute phase, as well as the adaptive immune response established both after infection and vaccination. METHODS: A PubMed search was performed covering January 2020 to June 2021 to extract biomarkers suitable for monitoring the immune response and outcome of COVID-19 and therapeutic interventions, including vaccination. RESULTS: To monitor the innate immune response, cytokines such as interleukin-6 or acute phase reactants such as C-reactive protein or procalcitonin can be measured on autoanalyzers complemented by automated white blood cell differential counts. The adaptive immune response can be followed by commercially available enzyme-linked immune spot assays to assess the specific activation of T cells or by monitoring immunoglobulin A (IgA), IgM, and IgG antibodies in serum to follow B-cell activation. As antigens of the SARS-CoV-2 virus, spike and nucleocapsid proteins are particularly suitable and allow differentiation between the immune response after infection or vaccination. CONCLUSIONS: Routine immune monitoring of COVID-19 is feasible in clinical laboratories with commercially available instruments and reagents. Strategies such as whether biomarkers reflecting the response of the innate and adaptive immune system can be used to make predictions and assist in individualizing therapeutic interventions or vaccination strategies need to be determined in appropriate clinical trials. Promising preliminary data are already available based on single-center reports and completed or ongoing vaccination trials.


Subject(s)
COVID-19 , Antibodies, Viral , Biomarkers , Humans , Laboratories, Clinical , Pandemics , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL